КОМПАНИЯ "ИТАЛ-ТЕХНО"
04128, Украина, г. Киев, ул. Туполева, 19, тел./факс: +38 (044) 422-21-13e-mail
Филиал в г. Одесса: 65028, Украина, г. Одесса, ул. Генерала Цветаева, 3/5, оф. 10, тел./факс: +38 (048) 733-16-43
Каталог продукции
Каталог
продукции

Теория преобразователей частоты

Основные понятия, определения, принципы работы

Электропривод включает в себя электрический двигатель, преобразователь электрической энергии (например, преобразователь частоты) и систему управления. В промышленности и быту применяются двигатели переменного и постоянного тока. Исторически сложилось, что для регулирования скорости вращения чаще использовали двигатели постоянного тока. Преобразователь в данном случае регулировал только напряжение, был прост и дешев. Однако двигатели постоянного тока имеют сложную конструкцию, критичный в эксплуатации щеточный аппарат и сравнительно дорогие. Асинхронные двигатели широко распространены, надежны, имеют относительно невысокую стоимость, хорошие эксплуатационные качества, но регуляторы скорости их вращения из-за сложности систем электронного регулирования частоты питающего напряжения стоили до начала 80-х годов дорого и не обладали качествами, необходимыми для широкого внедрения в индустрию. Благодаря бурному развитию электроники и появлению недорогих преобразователей частоты стало возможным регулирование скорости вращения асинхронных двигателей в широких масштабах. Быстрый рост рынка преобразователей частоты для асинхронных двигателей не в последнюю очередь стал возможен в связи с появлением новой элементной базы — силовых модулей на базе IGBT (Insulated Gate Bipolar Transistor — биполярный транзистор с изолированным затвором), рассчитанных на токи до нескольких килоампер, напряжение до нескольких киловольт и имеющих частоту коммутации 30 кГц и выше.

Для лучшего понимания принципов, лежащих в основе электронных систем регулирования скорости вращения, напомним устройство асин-хронного электродвигателя с короткозамкнутым ротором — наиболее мас-сового, повсеместно применяемого типа электродвигателя. Достаточно сказать, что суммарный объем электроэнергии, используемой для приведения в движение всех приводов с асинхронными двигателями, составляет более 50% всей потребляемой электроэнергии. Такой двигатель имеет неподвижный статор с обмотками, образующими полюса, и подвижный короткозамкнутый ротор. При приложении к статорным обмоткам электродвигателя трехфазного напряжения статорными токами, сдвинутыми относительно друг друга на 120 градусов, формируется вращающееся магнитное поле статора. Это поле индуцирует в роторе токи, порождающие собственное поле ротора, которое вращается синхронно с полем статора и образует общий вращающий поток двигателя. В результате взаимодействия токов ротора с магнитным потоком возникают действующие на проводники ротора механические силы и вращающий электромагнитный момент. При этом для создания момента необходимо, чтобы статорное поле вращалось со скоростью выше частоты вращения ротора. Эта разница в скорости вращения называется скольжением.

Скорость ротора асинхронного электродвигателя можно регулировать изменением частоты питающего напряжения, амплитуды питающего напряжения, числа пар полюсов статора.

Для изменения скорости вращения асинхронного электродвигателя наиболее широко используются устройства, позволяющие менять частоту подводимого напряжения — полупроводниковые преобразователи частоты. В простейшем случае частотного регулирования управление скоростью вращения осуществляется путем изменения частоты и амплитуды напряжения трехфазного источника питания. Как известно, регулирование скорости асинхронного двигателя изменением частоты подводимого к статору напряжения возможно как в сторону снижения скорости, так и в сторону увеличения скорости выше номинальной. При регулировании частоты вниз от номинальной можно выбрать такой закон частотного управления (соотношение между частотой и амплитудой питающего напряжения, подводимого к статору асинхронного двигателя), что магнитный поток машины будет поддерживаться неизменным. В этом случае максимальный момент двигателя сохраняется неизменным, и таким образом обеспечивается постоянство перегрузочной способности во всем диапазоне регулирования при неизменном моменте нагрузки. При регулировании частоты вверх от номинальной, что возможно у преобразователей частоты с промежуточным контуром постоянного тока, имеет место режим снижения магнитного потока двигателя, поскольку амплитуда напряжения остается неизменной на уровне ее номинального значения.

Существует два основных типа преобразователей частоты: с непосредственной связью и с промежуточным контуром постоянного тока. В первом случае выходное напряжение синусоидальной формы формируется из участков синусоид преобразуемого входного напряжения. При этом максимальное значение выходной частоты принципиально не может быть равным частоте питающей сети. Частота на выходе преобразователя этого типа обычно лежит в диапазоне от 0 до 25-33 Гц. Но наибольшее распространение получили преобразователи частоты с промежуточным контуром постоянного тока, выполненные на базе инверторов напряжения. Структурная схема такого преобразователя приведена на рисунке 1.

Рис. 1. Структурная cxема преобразователя частоты с проуежуточныу контуром постоянного тока

Рис. 1. Структурная cxема преобразователя частоты с проуежуточныу контуром постоянного тока

Переменное напряжение сети преобразуется с помощью диодного выпрямителя, а затем сглаживается в промежуточной цепи индуктивно-емкостным фильтром. И, наконец, инвертор, выходной каскад которого обычно выполняется на основе IGBT-модулей, осуществляет обратное преобразование из постоянного тока в переменный, обеспечивая формирование выходного сигнала с необходимыми значениями напряжения и частоты. Наиболее часто в инверторах применяется метод высокочастотной широтно-импульсной модуляции (ШИМ). В этом случае выходной сигнал преобразователя представляет собой последовательность импульсов напряжения постоянной амплитуды и изменяющейся длительности, которая на индуктивной нагрузке, каковой является обмотка статора, формирует токи синусоидальной формы.

Рис. 2. Выходной сигнал переобразователя частоты

Рис. 2. Выходной сигнал переобразователя частоты

Возможный диапазон регулирования частоты — от 0 до нескольких тысяч герц.

Типы нагрузок

Требования к электроприводу определяются диапазоном требуемых скоростей и типом нагрузки. Зависимость между скоростью вращения и моментом сопротивления неодинакова для нагрузок разного типа:

Рис. 3. Механические характеристики типичных нагрузок

Рис. 3. Механические характеристики типичных нагрузок

Многие нагрузки могут рассматриваться как имеющие постоянный момент во всем диапазоне изменения скорости. К ним относятся, например, конвейеры, компрессоры и поршневые насосы.

Некоторые виды нагрузки имеют переменную механическую характеристику, для которой момент нагрузки возрастает с увеличением скорости вращения. Типичным примером устройств с такой нагрузкой являются центробежные насосы и вентиляторы, чья механическая характеристика описывается уравнением квадратичной параболы, а значит, потребляемая мощность пропорциональна кубу скорости вращения. Из этого следует, что даже небольшое снижение скорости электропривода может дать значительный выигрыш в мощности — вот почему экономия электроэнергии является главным преимуществом использования управляемого электропривода для насосов и вентиляторов. Теоретически снижение скорости на 10% дает тридцати процентную экономию потребляемой мощности.

Есть класс устройств (экструдеры, промышленные миксеры), у которых механическая характеристика близка к характеристике насосов и вентиляторов. Но особенность нагрузок такого типа состоит в наличии высокого пускового момента, который с увеличением скорости снижается, а затем, начиная с некоторого значения, характеристика становится квадратичной.

Кроме того, существует и большое число нагрузок с совершенно уникальными механическими характеристиками. Поэтому в любом случае выбору электродвигателя и преобразователя частоты должен предшествовать этап анализа характера нагрузки и ее механической характеристики.

Режимы управления электродвигателем

В зависимости от характера нагрузки преобразователь частоты обеспечивает различные режимы управления электродвигателем, реали-зуя ту или иную зависимость между скоростью вращения электродвигате-ля и выходным напряжением.

Режим с линейной зависимостью между напряжением и частотой (U/f=const) реализуется простейшими преобразователями частоты для обеспечения постоянного момента нагрузки и используется для управления синхронными двигателями или двигателями, подключенными параллельно. Вместе с тем при уменьшении частоты, начиная с некоторого значения, максимальный момент двигателя начинает падать. Для повышения момента на низких частотах в преобразователях предусматривается функция повышения начального значения выходного напряжения, которая используется для компенсации падения момента для нагрузок с постоянным моментом или увеличения начального момента для нагрузок с высоким пусковым моментом, таких, например, как промышленный миксер. Для регулирования электроприводов насосов и вентиляторов используется квадратичная зависимость напряже-ние/частота (U/f^2 = const). Этот режим, так же как и предыдущий, можно использовать для управления параллельно подключенными двигателями.

Перечисленные режимы управления достаточны для большинства применений. Вместе с тем для повышения качества управления приводом требуется использование других, более совершенных методов управления. К ним относятся метод управления потокосцеплением (Flux Current Control — FCC) и метод бессенсорного векторного управления (Sensorless Vector Control — SVC). Оба метода базируются на использовании адаптивной модели электродвигателя, которая строится с помощью специализированного вычислительного устройства, входящего в состав системы управления преобразователя.

Наиболее точное и эффективное управление обеспечивает режим векторного управления без датчика обратной связи по скорости (SVC). Если в двигателях постоянного тока имеются две обмотки (статорная, или возбуждения и роторная, или якорная), что позволяет управлять раздель-но скоростью вращения (ток возбуждения) и электромагнитным моментом (ток якоря), то в двигателях переменного тока с короткозамкнутым ротором имеется всего лишь одна статорная обмотка, ток через которую формирует возбуждающее магнитное поле и определяет вращающий момент. С этим и связаны все трудности управления электродвигателем. Выход остается один: необходимо управлять амплитудой и фазой статорного тока, то есть его вектором. Однако для управления фазой тока, а значит, и фазой магнитного поля статора относительно вращающегося ротора необходимо знать точное положение ротора в любой момент времени. Эта задача может быть решена с использованием датчика положения, например, шифратора приращений. В такой конфигурации привод переменного тока по качеству регулирования становится сопоставимым с приводом постоянного тока. Но в составе большинства стандартных электродвигателей переменного тока встроенные датчики положения отсутствуют, поскольку их введение неизбежно ведет к усложнению конструкции двигателя и существенному повышению его стоимости.

Применение же современной технологии векторного управления позволяет обойти это ограничение путем использования математической адаптивной модели двигателя для предсказания положения ротора. При этом система управления должна с высокой точностью измерять значение выходных токов и напряжений, обеспечивать расчет параметров двигателя (сопротивление статора, значение индуктивности рассеяния и т.д.), точно моделировать тепловые характеристики двигателя, сообразовывать параметры двигателя с различными режимами его работы, осуществлять большой объем вычислений с очень высокой скоростью. Последнее обеспечивается применением в составе системы управления преобразователя специализированных интегральных схем ASIC (Applications Specific Integrated Circuit).

Векторное управление без датчиков обратной связи по скорости позволяет обеспечить динамические погрешности, характерные для регулируемого привода с замкнутой обратной связью. Однако полное управление моментом при скорости, близкой к нулевой, невозможно без обратной связи по скорости. Такая обратная связь становится необходимой и для достижения погрешности регулирования менее 1%. Контур обратной связи при этом легко реализуется с помощью самого преобразователя частоты.

Вместе с тем режим векторного управления не может быть использован для синхронных или реактивных синхронных электродвигателей, для группы двигателей, включенных параллельно, а также для двигателей, чья номинальная мощность меньше половины мощности преобразователя частоты или превышает ее.

Способы останова и режимы торможения электродвигателя

Для того чтобы быстро остановить или замедлить скорость механизма, приводимого во вращение электродвигателем, наряду с механическими применяют и электрические способы торможения. Сущность электрических способов торможения состоит в том, что электрическая машина в этот период из двигательного режима переводится в генераторный и, следовательно, создает электромагнитный момент, направленный против движения.

Самый простой способ останова — выбег электродвигателя. Двигатель отключается от питающей сети и останавливается по инерции. При этом время до полного останова не регулируется и определяется инерционными свойствами двигателя и его нагрузки.

Регулируемое время торможения обеспечивает генераторный способ, заключающийся в том, что преобразователь с необходимой скоро-стью уменьшает выходную частоту до требуемого значения. При этом двигатель превращается в генератор, преобразуя кинетическую энергию вращения в электрическую. В зависимости от типа выпрямляющего устройства энергия возвращается в первичную сеть либо накапливается в контуре постоянного тока преобразователя частоты. Во втором случае и в случае нагрузки с большим моментом инерции для рассеивания энергии может потребоваться применение внешнего тормозного сопротивления, подключение которого при возникновении опасного перенапряжения в промежуточном контуре преобразователя осуществляет специальная контролирующая схема. Таким образом, преимуществом генераторного торможения является предсказуемое время и плавность останова, высокий тормозной момент. Недостаток же заключается в том, что энергия выделяется в преобразователе, и в случае быстрого останова или большого момента инерции нагрузки для избежания перегрева встроенного резистора контура постоянного тока преобразователя необходимо использование внешнего сопротивления.

Для того чтобы осуществить торможение постоянным током, или, иными словами, динамическое торможение, с обмотки статора двигателя снимают переменное напряжение и на одну или две фазы подают постоянное напряжение. При этом магнитное поле будет вызывать вначале замедление, а затем и удержание ротора в неподвижном состоянии. Преимуществом динамического торможения является выделение электрической энергии в роторе двигателя, что делает не-нужным использование тормозного сопротивления, и плавный останов. Но поскольку выходная частота преобразователем не контролируется, то время торможения становится величиной неопределенной. Эффективность торможения в этом случае по сравнению с генераторным методом составляет 30-40%.

При комбинированном способе торможения используется комбинация двух описанных способов, то есть на переменную составляющую выходного напряжения преобразователя накладывается постоянная составляющая. Этот способ торможения сочетает в себе преимущества обоих электрических способов торможения и позволяет эффективно тормозить электродвигатель за короткое время без выделения тепла в преобразователе.

Valid XHTML 1.0 Transitional